Open Access Open Access  Restricted Access Subscription Access

Communication at High Data Rate with VCSEL Over MMF and Investigations

Dr. Devendra Kumar Tripathi

Abstract


Abstract

This paper presents performance evaluation for the high data rate proposed communication network with VCSEL and multi-mode optical fiber. Numerous numerical evaluations have been carried out for key parameters over the span of multi-mode fiber. It showed wide eye opening over the selected length of fiber. It depicted good performance for line width of 10, lower normalizer average power, with temperature value of 40 degree centigrade. Overall performance over 2km of MMF is good however dropping in Q factor and BER has been observed with hike in data rates. Investigation depicted proposed design could be an assistance for the short haul communication at higher data rates providing essential bandwidth at low expenses.

Keywords: local area networks (LANs), multi mode fiber (MMF), optical interlink (OI), vertical cavity surface emitting laser (VCSEL)

Cite this Article

Devendra Kr. Tripathi. Communication at high data rate with VCSEL over MMF and Investigations. Journal of Communication Engineering & Systems. 2019; 9(1): 14–21p.



Keywords


local area networks (LANs), multi mode fiber (MMF), optical interlink (OI), vertical cavity surface emitting laser (VCSEL)

Full Text:

PDF

References


REFERENCES

D. J. Richardson, J. M. Fini, and L. E. Nelson, "Space-division multiplexing in optical fibres," Nature Photonics 7, 354–362 (2013).

Tripathi D.K,P. singh ,et.al. Study in F.O.C. multiplexing techniques –a review. Journal of electrical engineering and electronic technology.2014;3(1):1-23p.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, "Fiber-optic fluorescence imaging," Nat Meth 2, 941–950 (2005).

Y. Sun, R. Lingle, R. Shubochkin et al., “SWDM PAM4 transmission over next generation wide-band multimode optical fiber,” Journal of Lightwave Technology, vol. 35, no. 4, Article ID 7600413, pp. 690–697, 2017.

P. Westbergh, J. S. Gustavsson, Å. Haglund, M. Skold, A. Joel, and A. Larsson, “High-speed, low-current-density 850 nm VCSELs,” IEEE J.Sel. Top. Quantum Electron. 15, 694–703 (2009).

P. Westbergh, J. S. Gustavsson, B. Kögel, A. Haglund, A. Larsson, A.Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40 Gbit/s error-free operation of oxide-confined 850 nm VCSEL,” Electron. Lett. 46,1014–1016 (2010).

C.-T. Tsai, S. Chang, C.-Y. Pong, S.-F. Liang, Y.-C. Li, C.-H. Wu, T.-T. Shih, J.-J. Huang, H.-C. Kuo, W.-H. Cheng, and G.-R. Lin, “RIN suppressed multimode 850-nm VCSEL for 56-Gbps 16-QAM OFDM and 22-Gbps PAM-4 transmission,” in Conference on Optical Fiber Communication, Anaheim, California (2016), paper Th4D.2.

H. E. Li and K. Iga, Vertical-Cavity Surface-Emitting Laser Devices (Springer, 2003).

D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. Proesel, C. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “64 Gb/s transmission over 57 m MMF using an NRZ modulated 850 nm VCSEL,” in Conference on Optical Fiber Communication, San Francisco,California (2014), paper Th3C. 2.

P. Westbergh, R. Safaisini, E. Haglund, B. Kögel, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-free up to 44 Gbit/s,” Electron. Lett. 48, 1145–1147 (2012).

E.P. Haglund et al., "20-Gb/s modulation of silicon-integrated shortwavelength hybrid- cavity VCSELs", IEEE Photonic Tech L, vol. 28,pp. 856-859, April 2016.

W. W. Chow, K. D. Choquette, M. H. Crawford, K. L. Lear, and G. R. Hadley, “Design, fabrication, and performance of infrared and visible vertical-cavity surface-emitting lasers,” IEEE Journal of Quantum Electronics, vol. 33, no. 10, pp. 1810–1823, 1997.

R. Thornton, Y. Zou, J. Tramontana, M. Hagerott Crawford, R. P. Schneider, and K. D. Choquette, “Visible (670 nm) vertical cavity surface emitting lasers with indium tin oxide transparent conducting top contacts,” in Proceedings of the 8th Annual Meeting of the IEEE Lasers and Electro-Optics Society, pp. 108–109, November 1995.

R. Safaisini, K. Johnson, M. Hibbs-Brenner, and K. L. Lear, “Stress analysis in copper plated red VCSELs,” Proceedings of the 23rd Annual Meeting of the IEEE Photonics Society,(PHOTINICS ’10), pp. 246–247, 2010.

J.A. Hudging, S.F. Lim, G.S. Li, W. Yuen, K.Y. Lau, C.J. Chang-Hasnain, Compact, integrated optical disk readout head using a novel bistable vertical cavity surface emitting lasers, IEEE Photon. Technol. Lett. 11 (2) (1999) 245–247.

J. Geske, V. Jayaraman, T. Goodwin, M. Culick, M. MacDougal, T. Goodmough, D. Welch, J. Bower, 2.5 Gb/s transmission over 50 km with a 1.3 _m vertical cavity surface emitting laser, IEEE Photon. Technol. Lett. 12 (12) (2000) 1707–1709.

H. Kosaka, Smart integration and packaging of 2D VCSEL’s of high speed parallel links, IEEE Select. Topics Quantum Electron. 5 (2) (1999) 184–192.

K. Kasahara, VSTEP based smart pixels, IEEE J. Quantum Electron. 29 (2) (1993) 757–768.

C. Jung, R. King, R. Jäger, et al., 64 channel flip-chip mounted selectively oxidized GaAs VCSEL array for parallel optical interconnects, in: Vertical-cavity surfaceemitting lasers III. SPIE, vol. 3627, 1999, pp. 143–151.

Hao Yongqin, Liu Wenli, Zhong Jingchang, et al., A new structure for verticalcavity surface emitting laser, Acta Armamentarii 28 (2) (2007) 167–169.

Kang Xiangning, Song Guofeng, Ye Xiaojun, et al., Effect of high aluminum AlGaAs oxidized layers on vertical-cavity surface-emitting lasers, Chin. J. Semicond. 25 (5) (2004) 589–593.

H. Soda, K. Iga, C. Kitahara, Y. Suematsu, GaInAsP/InP surface emitting injection lasers. Jpn. J. Appl. Phys. 18, 2329–2330 (1979).


Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Journal of Communication Engineering & Systems